Archive for Awards

Awards

Annual Award Begging Post, 2015 Edition

It’s that time of year again, when we authors push our collections to the center of the table and cough, meaningfully, until people take the hint. So here’s what I’ve got!

tl;dr — Two short pieces in particular, “The Shadow of Elysium” and “The End of the War”, I would love to see nominated in the “Novelette” category. You can get “The Shadow of Elysium” on Amazon or audible. “End of the War” is available as a free PDF, or free as a podcast.

(You can see what I’m up to next year in my 2016 preview post.)

Novel-wise, there’s The Price of Valor and The Mad Apprentice, released in July and April respectively. Later books in series are tough to get on awards ballots, but if you enjoyed them and wanted to nominate, I wouldn’t dissuade you!

I’ve had a pretty productive year in terms of short fiction. Here’s a quick summary:

  • “The First Kill”, in Blackguards, from Ragnarok Publications. Also available as an audio short! A Shadow Campaigns story about the first meeting between Sothe and Andreas. (6,500 words)
  • “The Guns of the Wastes”, in Operation Arcana, from Baen Books. Also available in audio as a free podcast! A new recruit reports for duty aboard an enormous land-ship battling hordes of steampunk spiders. (7,500 words)
  • “REAL”, in Press Start to Play, from Vintage. The creator of an Augmented Reality Game gets more than he bargained for. (5,700 words)
  • The Shadow of Elysium“, from Penguin. Also available as an audio short! A Shadow Campaigns novella about a young man who learns he harbors a forbidden power. Continues the story from “The Penitent Damned”. (15,400 words)
  • “The End of the War”, in Asimov’s Science Fiction, June ’15. A finalist for the Asimov’s Readers’ Awardsread online for free! Also available in audio as a free podcast! Lonely soldiers chat in the depths of space while directing robot armies against each other. (11,000 words)
  • “Magic Beans”, in Coffee, Hot from Circlet Press. Late-night guests at a coffee shop discover their new coffee-maker is a sex-powered inter-dimensional warp drive. (15,600 words)


So what can you nominate me for? I’ll keep a running tally here, updating this post as things change.

  • Hugo Awards! If you’re a member of the 2015, 2016, or 2017 WorldCons, you can nominate for the Hugo awards. As for the Nebulas, the last three stories on my list all count as “novelette”. Nominations close March 31st.
Awards, Code

E Pluribus Hugo simulator

This is pretty deep in “inside baseball” territory, so if you haven’t been following the Hugo awards controversy you’re probably safe ignoring it.

The short version is, after the Sad Puppies kerfuffle this year that screw up the nominations, the WSFS (which administers the Hugos) voted to adopt a new nominating system called “E Pluribus Hugo”. It’s described over here in detail. If the vote is confirmed at next year’s WorldCon, EPH will be used for the 2017 and future Hugos.

Roughly speaking, it works like this. Everybody votes for up to five works as normal. Each ballot is given one point, which is split among the works nominated (so .2 each if you put five) and all the points from all the ballots are added up. The works with the least number of points (at least two, more in the case of ties) are compared, and the one with the fewest votes (i.e. present on the fewest ballots) is eliminated from contention. Then the points are recounted for another round — if one of your works was eliminated, its points are reallocated to the others on your ballot. (So if you nominated five works, at .2 each, and one was eliminated first round, the remaining four would count for .25 each, and so on.)

The point here is to help consolidate the field and reduce the advantages of slate voting. As I wrote earlier, the problem is that slate voting under the “naïve” rules (where you just add up all the votes) is a dominant strategy. Inasmuch as we agree that the awards SHOULD be about nominating stuff you personally thought was the best of the year, rather than coordinating with some slate, then the nomination rules needed to be amended to favor that “strategy” over coordination.

Important Caveat: I am not a voting theory expert! Smarter people than me have thought about this. However, I am a programmer of sorts, and interested in this stuff. So, I wrote up a thing that runs the EPH algorithm on test data. (I obviously don’t have access to actual Hugo data!) I thought other people might get something out of it, so I’m posting it here.

Here is the EPHConsole project as a Visual Studio ’13 project.
Here is the compiled self-installer for the EPHConsole project.
Here is the EXE file, which should work if you have .NET installed on your machine.
Here is an example data file.

Usage is pretty simple: run “EPHConsole.exe [datafile]”, hit enter when it pauses after displaying the parsed ballots, observe the results. The datafile is text, with each ballot on its own line as a set of integers separated by spaces. (“1 2 3 4 5”) There is no validation that ballots are restricted to five votes, or can’t duplicate votes.

If anybody wants to adapt this code to other purposes, modify it, etc, feel free. Shoot me a line and I’ll put a link here. It’s definitely not optimized (for one thing, I used VS and C#, which is way overkill but let me bang it out in a few hours) but it runs on datasets of realistic size in less than a second, so probably not an issue.

(If you use this and find something that you think is a bug, just send me a description and the data file you were using, and I’ll update accordingly.)

Here’s an example, using the data file above. I generated a random assortment of 800 voters choosing among 40 works, with ballots of varying sizes. Then I added 200 voters choosing among 7 works (the “slate”, numbers 41-47) similarly. It gives you a good sense of how EPH works and how it helps the slate problem.

First, it lists the ballot data, which I’ve snipped here. In Round 1, before any eliminations, you can see that the “non-slate” works have between 16.8 and 23.3 points. (800 points divided among 40 works, clustered around 20. Stats!) The “slate” works have between 26.3 and 31.9 points. (200 points divided among 7 works.) So the slate is at the top of the list. (The list is displaying points/# of votes for each work.)

However, as works at the bottom are eliminated and their points reallocated, the non-slate field converges. By round 9, a non-slate work breaks the top five. In round 15, two slate works are pitted against each other, and one is eliminated, consolidating the slate vote. And so on as the rounds continue.

The final tally shows one slate work, the most popular, along with four non-slate works. This is more or less correct, in the sense that the voters were 80% non-slate and 20% slate; the slate voters were neither completely shut out nor completely dominant. So in that sense, EPH works as advertised!

One concern, though, is that the breadth of the field is important. A run with similar numbers of voters, but 80 non-slate works instead of 40, gives two slate winners (though the naïve method would give ALL the slots to the slate), and with 160 gives four slate winners. This gets pretty deep into the voting system weeds — arguably, with 800 voters split over 160 candidates, the 200 voters focused on their seven deserve to win. (The problem really stems from “exhausted ballots” — among the 800, ballots with no remaining candidates don’t have any say at all. But since we can’t get people to do an exhaustive ranking of all possible Hugo candidates, this is inevitable.)

Anyway, enjoy! You can use the contact form to get in touch with me if you have problems, or if you want to share interesting data. I will update this post if I get stuff or need to fix things.


Round 1
16 16.88333/81
14 16.91666/80
5 17.3/83
10 17.35/84
17 17.48333/84
22 17.6/85
30 17.63333/83
34 17.65/86
24 17.8/85
3 17.98333/86
13 18.18333/86
39 18.28333/86
2 18.51666/88
12 18.58333/88
18 18.95/91
1 19.4/93
26 19.55/93
28 19.58334/94
32 19.65/93
9 19.85/96
4 19.9/96
25 20.41667/95
23 20.41667/96
36 21.06667/99
31 21.25001/102
35 21.40001/100
8 21.40001/102
6 21.53334/101
20 21.56668/103
27 21.56668/102
40 21.85001/104
21 21.86668/104
11 22.06668/103
38 22.13334/105
37 22.20001/107
33 22.33334/107
19 22.50001/107
7 22.78335/107
15 23.23335/108
29 23.36668/111
43 26.31668/98
41 26.78334/99
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 16.91666
Eliminating 14.

Round 2
16 17.23333/81
5 17.45/83
10 17.65/84
22 17.8/85
17 17.83333/84
34 17.9/86
30 18.05/83
24 18.26666/85
3 18.33333/86
13 18.6/86
39 18.75/86
12 19.05/88
2 19.08333/88
18 19.35/91
1 19.71667/93
26 19.75/93
28 20.11667/94
9 20.18334/96
32 20.2/93
4 20.28334/96
23 20.70001/96
25 21.53334/95
8 21.73334/102
36 21.81668/99
20 21.81668/103
31 21.83334/102
27 21.83334/102
6 21.91667/101
35 21.96667/100
40 22.33334/104
38 22.43334/105
21 22.45001/104
37 22.53334/107
19 22.85001/107
33 22.86668/107
11 22.93334/103
7 23.18335/107
15 23.66668/108
29 24.00001/111
43 26.31668/98
41 26.78334/99
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 17.45
Eliminating 16.

Round 3
22 18.03333/85
10 18.05/84
5 18.06666/83
17 18.16666/84
34 18.23333/86
30 18.48334/83
24 18.51667/85
39 18.9/86
3 18.98334/86
2 19.33333/88
12 19.33333/88
13 19.38333/86
18 19.71667/91
1 20.21667/93
26 20.35/93
9 20.51667/96
32 20.51667/93
28 20.55/94
4 20.63334/96
23 21.28334/96
25 21.73334/95
35 22.11667/100
8 22.25001/102
31 22.31667/102
6 22.41667/101
27 22.41668/102
20 22.46668/103
36 22.58334/99
40 22.66667/104
21 22.73335/104
38 23.25001/105
37 23.25001/107
33 23.26668/107
11 23.30001/103
19 23.45001/107
7 23.85001/107
15 24.10001/108
29 24.56668/111
43 26.31668/98
41 26.78334/99
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 18.05
Eliminating 10.

Round 4
5 18.5/83
22 18.5/85
34 18.65/86
17 18.76666/84
30 18.8/83
24 18.81667/85
39 19.23334/86
3 19.26667/86
2 19.63334/88
13 19.83333/86
18 19.96667/91
12 19.98334/88
26 20.55/93
1 20.68334/93
4 20.93334/96
32 21.01667/93
9 21.13334/96
28 21.25001/94
23 21.78334/96
25 22.06668/95
35 22.35001/100
8 22.75001/102
6 22.90001/101
20 23.08334/103
31 23.08334/102
36 23.13334/99
27 23.30001/102
21 23.33335/104
40 23.35001/104
37 23.63334/107
33 23.68335/107
38 23.80001/105
19 23.88334/107
11 23.91668/103
7 24.60001/107
15 24.76668/108
29 25.06668/111
43 26.31668/98
41 26.78334/99
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 18.5
Eliminating 5.

Round 5
22 18.83334/85
34 19.18334/86
30 19.21667/83
24 19.26667/85
17 19.4/84
39 19.5/86
3 19.98334/86
2 20.2/88
13 20.33333/86
18 20.33334/91
12 20.43333/88
1 21.15/93
26 21.23334/93
9 21.46667/96
32 21.50001/93
4 21.63334/96
28 21.66667/94
25 22.48334/95
23 22.61667/96
35 22.66668/100
8 23.00001/102
6 23.23334/101
36 23.55001/99
31 23.65001/102
21 23.70001/104
20 23.80001/103
40 23.93334/104
37 23.96667/107
27 24.15001/102
33 24.18335/107
11 24.28334/103
38 24.38334/105
19 24.55001/107
7 25.31668/107
15 25.35002/108
29 25.85001/111
43 26.31668/98
41 26.78334/99
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 19.18334
Eliminating 22.

Round 6
30 19.71667/83
34 19.73334/86
17 19.81667/84
24 19.91667/85
39 20.26667/86
3 20.51667/86
2 20.7/88
13 20.85/86
12 20.91667/88
18 21.13334/91
1 21.55/93
26 21.73334/93
4 21.86667/96
32 21.86667/93
28 21.96667/94
9 22.25001/96
25 22.71667/95
23 22.86667/96
35 23.20001/100
8 23.28334/102
6 23.95001/101
36 23.98335/99
21 24.25001/104
31 24.45001/102
37 24.53334/107
20 24.55001/103
40 24.61667/104
27 24.66668/102
38 24.73334/105
33 24.76668/107
19 24.91668/107
11 25.00001/103
15 25.81668/108
7 26.25001/107
43 26.31668/98
29 26.65001/111
41 26.78334/99
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 19.73334
Eliminating 30.

Round 7
34 20.21667/86
17 20.55/84
39 20.55/86
24 20.58334/85
3 20.91667/86
13 20.98334/86
2 21.10001/88
18 21.7/91
12 21.7/88
4 22.11667/96
26 22.28334/93
1 22.31668/93
28 22.33334/94
9 22.66667/96
32 22.68334/93
23 23.18334/96
25 23.40001/95
35 23.70001/100
8 23.70001/102
6 24.65001/101
36 24.71668/99
21 24.83334/104
37 24.90001/107
31 25.01668/102
40 25.08334/104
38 25.33334/105
19 25.36668/107
27 25.55001/102
11 25.61668/103
33 25.65001/107
20 25.78335/103
43 26.31668/98
7 26.70001/107
41 26.78334/99
15 26.96668/108
29 27.15001/111
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 20.55
Eliminating 17.

Round 8
34 20.56667/86
39 21.08334/86
3 21.13334/86
2 21.41667/88
24 21.43334/85
13 21.9/86
18 22.33334/91
1 22.58334/93
12 22.78334/88
4 22.88334/96
26 22.96668/93
9 23/96
28 23.00001/94
32 23.16667/93
23 23.61667/96
25 23.91668/95
8 24.23334/102
35 24.35001/100
6 25.06668/101
36 25.16668/99
21 25.33334/104
31 25.48335/102
19 25.63335/107
40 25.78334/104
37 25.86668/107
38 25.95001/105
11 26.26668/103
43 26.31668/98
33 26.38334/107
20 26.43335/103
27 26.51668/102
41 26.78334/99
7 27.81668/107
15 27.96668/108
29 27.96668/111
47 28.05001/104
42 28.06668/101
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 21.08334
Eliminating 34.

Round 9
3 21.66667/86
39 21.8/86
24 21.95/85
2 22.25001/88
13 22.88334/86
1 22.95001/93
18 23.13334/91
28 23.36668/94
26 23.48334/93
12 23.51667/88
4 23.63334/96
9 23.70001/96
32 23.76667/93
25 24.45001/95
23 24.48334/96
35 24.58334/100
8 24.73334/102
6 25.63334/101
19 25.93335/107
36 26.01668/99
21 26.05001/104
43 26.31668/98
37 26.38334/107
31 26.41668/102
40 26.45001/104
33 26.75001/107
41 26.78334/99
11 26.85001/103
38 26.88335/105
20 26.96668/103
27 27.23335/102
47 28.05001/104
42 28.06668/101
15 28.65001/108
29 28.70001/111
7 28.73335/107
44 28.83335/107
46 30.05002/113
45 31.90002/118
Threshhold: 21.8
Eliminating 3.

Round 10
24 22.51667/85
39 22.68334/86
2 23.13334/88
1 23.31668/93
18 23.40001/91
13 23.45001/86
28 23.50001/94
12 23.91667/88
26 24.10001/93
9 24.35001/96
4 24.38334/96
32 24.48334/93
23 25.00001/96
25 25.00001/95
35 25.08334/100
8 25.93334/102
43 26.31668/98
19 26.40001/107
36 26.63334/99
6 26.68334/101
41 26.78334/99
21 26.80001/104
40 27.13334/104
31 27.20001/102
37 27.28334/107
33 27.38334/107
11 27.51668/103
38 27.75001/105
27 27.85002/102
20 27.96668/103
47 28.05001/104
42 28.06668/101
44 28.83335/107
15 29.45001/108
7 29.58335/107
46 30.05002/113
29 30.11668/111
45 31.90002/118
Threshhold: 22.68334
Eliminating 24.

Round 11
39 23.53334/86
2 23.60001/88
18 23.91667/91
28 23.96668/94
1 24.01668/93
26 24.58334/93
13 24.71668/86
4 25.06668/96
9 25.08334/96
32 25.16667/93
25 25.26668/95
23 25.71667/96
35 25.71668/100
12 25.76668/88
43 26.31668/98
41 26.78334/99
8 26.88334/102
19 26.91668/107
6 27.03334/101
36 27.28335/99
21 27.33334/104
40 27.73334/104
37 27.88334/107
47 28.05001/104
31 28.05001/102
42 28.06668/101
38 28.45001/105
33 28.48334/107
27 28.55001/102
44 28.83335/107
20 28.91668/103
11 29.16668/103
15 29.86668/108
46 30.05002/113
7 30.31668/107
29 31.01668/111
45 31.90002/118
Threshhold: 23.60001
Eliminating 39.

Round 12
2 24.20001/88
28 24.43334/94
18 24.56667/91
1 24.68335/93
26 25.21667/93
32 25.50001/93
13 25.68334/86
4 25.83334/96
9 25.90001/96
25 26.21668/95
43 26.31668/98
23 26.36668/96
35 26.68334/100
41 26.78334/99
12 27.36668/88
8 27.50001/102
6 27.63334/101
19 27.75001/107
36 27.96668/99
21 28.01668/104
40 28.03334/104
47 28.05001/104
42 28.06668/101
37 28.70001/107
44 28.83335/107
31 28.98335/102
33 29.26668/107
27 29.40001/102
38 29.40001/105
20 29.83334/103
46 30.05002/113
15 30.30001/108
11 30.68334/103
7 31.38335/107
29 31.50001/111
45 31.90002/118
Threshhold: 24.43334
Eliminating 2.

Round 13
18 25.18334/91
1 25.41668/93
28 25.60001/94
26 25.95/93
43 26.31668/98
32 26.48334/93
13 26.56668/86
41 26.78334/99
4 26.86668/96
25 26.88334/95
23 26.90001/96
9 26.91667/96
35 27.46667/100
47 28.05001/104
42 28.06668/101
8 28.15001/102
12 28.23334/88
36 28.61668/99
44 28.83335/107
6 28.88334/101
19 28.96668/107
40 28.98334/104
21 29.13334/104
31 29.60001/102
37 29.63335/107
46 30.05002/113
33 30.16668/107
38 30.38335/105
27 30.60001/102
20 30.63334/103
15 30.93335/108
11 31.06668/103
45 31.90002/118
7 32.35001/107
29 32.43335/111
Threshhold: 25.41668
Eliminating 18.

Round 14
28 26.03334/94
43 26.31668/98
1 26.50001/93
41 26.78334/99
26 26.8/93
13 27.15001/86
9 27.26667/96
32 27.31667/93
47 28.05001/104
42 28.06668/101
23 28.33334/96
4 28.40001/96
25 28.43334/95
35 28.65001/100
8 28.80001/102
44 28.83335/107
19 29.25001/107
6 29.55001/101
36 29.60001/99
40 29.61668/104
21 29.63334/104
46 30.05002/113
31 30.26668/102
37 30.61668/107
12 30.81668/88
27 30.90001/102
33 31.35001/107
15 31.41668/108
38 31.61668/105
20 31.65001/103
11 31.88334/103
45 31.90002/118
29 33.25001/111
7 33.90001/107
Threshhold: 26.31668
Eliminating 28.

Round 15
43 26.31668/98
41 26.78334/99
1 27.30001/93
26 27.73334/93
13 27.95001/86
47 28.05001/104
42 28.06668/101
9 28.08334/96
44 28.83335/107
25 28.98335/95
23 29.13335/96
32 29.30001/93
4 29.38334/96
35 29.91668/100
46 30.05002/113
8 30.25001/102
36 30.41668/99
21 30.46668/104
6 30.48335/101
19 30.70001/107
40 30.75001/104
12 31.41668/88
31 31.63335/102
37 31.66668/107
45 31.90002/118
27 31.96668/102
33 32.21668/107
38 32.25002/105
20 32.45001/103
11 32.51668/103
15 32.80001/108
29 34.21668/111
7 35.01668/107
Threshhold: 26.78334
Eliminating 43.

Round 16
1 27.30001/93
26 27.73334/93
13 27.95001/86
9 28.08334/96
25 28.98335/95
23 29.13335/96
32 29.30001/93
4 29.38334/96
41 29.80001/99
35 29.91668/100
8 30.25001/102
36 30.41668/99
21 30.46668/104
6 30.48335/101
19 30.70001/107
40 30.75001/104
12 31.41668/88
31 31.63335/102
37 31.66668/107
47 31.81668/104
27 31.96668/102
33 32.21668/107
38 32.25002/105
20 32.45001/103
11 32.51668/103
42 32.58334/101
15 32.80001/108
44 33.06668/107
29 34.21668/111
46 34.46668/113
7 35.01668/107
45 38.26667/118
Threshhold: 27.73334
Eliminating 1.

Round 17
26 28.35001/93
9 28.78334/96
13 29.21667/86
23 29.61668/96
41 29.80001/99
25 30.26668/95
4 30.31668/96
35 30.61668/100
8 30.81668/102
32 31.16668/93
40 31.20001/104
6 31.21668/101
36 31.23334/99
47 31.81668/104
21 31.85002/104
19 31.93335/107
12 32.20001/88
31 32.43334/102
42 32.58334/101
38 32.90002/105
33 32.91668/107
44 33.06668/107
37 33.13335/107
27 33.20001/102
15 34.05001/108
11 34.25001/103
46 34.46668/113
20 34.88335/103
29 35.15001/111
7 37.30001/107
45 38.26667/118
Threshhold: 28.78334
Eliminating 26.

Round 18
13 29.56668/86
41 29.80001/99
9 30.00001/96
23 30.83335/96
4 30.95001/96
35 31.63334/100
32 31.63334/93
25 31.78334/95
47 31.81668/104
8 31.86668/102
40 32.00001/104
6 32.48334/101
21 32.56668/104
42 32.58334/101
36 32.63335/99
12 32.91667/88
31 33.06667/102
44 33.06668/107
19 33.38335/107
38 33.40002/105
33 34.21667/107
46 34.46668/113
37 34.51668/107
27 34.95001/102
11 35.58334/103
15 35.85001/108
20 36.21668/103
29 36.56668/111
45 38.26667/118
7 39.38333/107
Threshhold: 29.80001
Eliminating 13.

Round 19
41 29.80001/99
9 31.11667/96
23 31.56668/96
47 31.81668/104
4 31.98335/96
32 32.01668/93
35 32.18334/100
42 32.58334/101
25 32.75001/95
44 33.06668/107
40 33.33334/104
6 33.35001/101
21 33.35001/104
12 33.71667/88
36 34.05001/99
8 34.06667/102
31 34.08334/102
19 34.43335/107
46 34.46668/113
33 35.38334/107
11 35.78334/103
38 35.78334/105
27 36.28334/102
15 36.73334/108
20 37.01668/103
37 37.63334/107
29 38.15002/111
45 38.26667/118
7 40.23333/107
Threshhold: 31.11667
Eliminating 9.

Round 20
41 29.80001/99
47 31.81668/104
42 32.58334/101
23 32.70002/96
35 33.01668/100
44 33.06668/107
32 33.15001/93
25 33.58334/95
4 33.70001/96
46 34.46668/113
6 34.68334/101
21 34.70001/104
8 34.90001/102
12 35.15001/88
40 35.25/104
36 35.41667/99
31 35.58334/102
19 35.93335/107
33 36.35/107
27 37/102
38 37.16667/105
11 37.18334/103
15 37.7/108
20 37.90001/103
45 38.26667/118
37 38.61667/107
29 40.86668/111
7 42.44999/107
Threshhold: 31.81668
Eliminating 41.

Round 21
23 32.70002/96
35 33.01668/100
32 33.15001/93
25 33.58334/95
4 33.70001/96
6 34.68334/101
21 34.70001/104
8 34.90001/102
12 35.15001/88
40 35.25/104
36 35.41667/99
31 35.58334/102
19 35.93335/107
33 36.35/107
27 37/102
38 37.16667/105
11 37.18334/103
47 37.33334/104
42 37.66666/101
15 37.7/108
20 37.90001/103
44 38.41667/107
37 38.61667/107
46 40.75/113
29 40.86668/111
7 42.44999/107
45 45.83332/118
Threshhold: 33.01668
Eliminating 23.

Round 22
35 34.81667/100
4 35.25001/96
21 35.53334/104
32 35.58334/93
8 35.7/102
12 35.7/88
25 35.75/95
36 36.56667/99
40 36.71667/104
19 36.76668/107
6 36.93333/101
47 37.33334/104
31 37.5/102
42 37.66666/101
33 37.9/107
27 38.08334/102
11 38.2/103
44 38.41667/107
38 38.73333/105
15 39.55/108
20 39.95001/103
37 40.38333/107
46 40.75/113
29 42.35001/111
7 45.03333/107
45 45.83332/118
Threshhold: 35.25001
Eliminating 4.

Round 23
32 36.16668/93
35 36.45/100
12 36.95/88
8 37.21667/102
47 37.33334/104
36 37.48334/99
42 37.66666/101
21 37.7/104
25 37.76667/95
19 38.03335/107
44 38.41667/107
6 38.43334/101
40 39.06667/104
27 39.16668/102
31 39.25/102
11 39.3/103
33 40.53333/107
46 40.75/113
15 40.98333/108
38 41.2/105
20 41.63334/103
37 42.39999/107
29 43.26667/111
45 45.83332/118
7 47/107
Threshhold: 36.45
Eliminating 32.

Round 24
47 37.33334/104
12 37.61666/88
42 37.66666/101
8 38.05/102
44 38.41667/107
35 38.45/100
36 38.9/99
25 39.6/95
19 39.78334/107
21 39.86668/104
6 40.1/101
40 40.23333/104
27 40.5/102
31 40.58333/102
11 40.71667/103
46 40.75/113
33 41.7/107
38 42.69999/105
15 43.23333/108
20 43.88334/103
37 43.89999/107
45 45.83332/118
29 46.35/111
7 48.83333/107
Threshhold: 37.61666
Eliminating 12.

Round 25
47 37.33334/104
42 37.66666/101
8 38.38333/102
44 38.41667/107
46 40.75/113
36 40.78333/99
35 40.88333/100
25 41.01667/95
19 41.31667/107
40 41.66666/104
27 42.08333/102
21 42.08333/104
33 42.53333/107
6 42.75/101
31 42.96666/102
38 43.96666/105
15 43.98333/108
11 44.18333/103
20 45.03334/103
37 45.33332/107
45 45.83332/118
29 48.31667/111
7 49.71666/107
Threshhold: 37.66666
Eliminating 42.

Round 26
8 38.38333/102
36 40.78333/99
35 40.88333/100
25 41.01667/95
19 41.31667/107
40 41.66666/104
27 42.08333/102
21 42.08333/104
33 42.53333/107
6 42.75/101
31 42.96666/102
38 43.96666/105
15 43.98333/108
11 44.18333/103
20 45.03334/103
37 45.33332/107
47 45.49999/104
44 46.83332/107
29 48.31667/111
7 49.71666/107
46 49.83332/113
45 56.83332/118
Threshhold: 40.78333
Eliminating 36.

Round 27
8 39.54999/102
35 41.96666/100
25 42.6/95
19 42.78334/107
27 43.41666/102
40 43.71667/104
21 44/104
6 44.83334/101
33 45.03333/107
31 45.38333/102
47 45.49999/104
15 45.94999/108
38 46.46665/105
44 46.83332/107
11 47.18332/103
20 47.28333/103
37 48/107
46 49.83332/113
29 50.86666/111
7 50.96666/107
45 56.83332/118
Threshhold: 41.96666
Eliminating 35.

Round 28
8 41.18333/102
25 43.93333/95
47 45.49999/104
27 45.91666/102
19 46.04999/107
31 46.13333/102
6 46.34999/101
40 46.35/104
21 46.76666/104
44 46.83332/107
20 48.25/103
15 48.36665/108
38 48.84998/105
37 49.46666/107
33 49.58332/107
46 49.83332/113
11 50.09999/103
7 52.43333/107
29 53.26665/111
45 56.83332/118
Threshhold: 43.93333
Eliminating 25.

Round 29
8 44.48333/102
47 45.49999/104
44 46.83332/107
31 47.28333/102
19 47.89998/107
27 48.33333/102
6 48.64999/101
21 48.73333/104
40 48.98333/104
20 49.33333/103
46 49.83332/113
38 49.84998/105
15 49.86665/108
37 51.68333/107
33 53.24999/107
11 53.48332/103
7 53.89999/107
29 55.26665/111
45 56.83332/118
Threshhold: 45.49999
Eliminating 8.

Round 30
47 45.49999/104
44 46.83332/107
46 49.83332/113
6 50.06665/101
31 50.08332/102
19 50.73331/107
38 50.93332/105
27 50.93332/102
40 51.23333/104
21 51.53333/104
20 51.96667/103
15 52.69999/108
37 53.78333/107
11 55.78332/103
33 55.91666/107
45 56.83332/118
7 57.06665/107
29 57.26665/111
Threshhold: 46.83332
Eliminating 47.

Round 31
6 50.06665/101
31 50.08332/102
19 50.73331/107
38 50.93332/105
27 50.93332/102
40 51.23333/104
21 51.53333/104
20 51.96667/103
15 52.69999/108
37 53.78333/107
11 55.78332/103
33 55.91666/107
7 57.06665/107
29 57.26665/111
44 57.83332/107
46 63.33332/113
45 69.83333/118
Threshhold: 50.08332
Eliminating 6.

Round 32
31 51.58332/102
27 52.81666/102
20 52.9/103
21 52.94999/104
38 53.34998/105
15 54.19999/108
40 54.33332/104
19 54.39999/107
11 57.78332/103
44 57.83332/107
37 58.74999/107
29 59.69999/111
33 59.83332/107
7 60.39998/107
46 63.33332/113
45 69.83333/118
Threshhold: 52.81666
Eliminating 31.

Round 33
20 55.15/103
15 56.11665/108
27 56.14999/102
38 56.18332/105
21 56.95/104
19 56.98332/107
44 57.83332/107
40 58.58332/104
11 60.78332/103
37 61.33332/107
33 63.16666/107
29 63.2/111
46 63.33332/113
7 63.39998/107
45 69.83333/118
Threshhold: 56.11665
Eliminating 20.

Round 34
44 57.83332/107
27 59.24999/102
19 59.86666/107
21 60.28333/104
15 60.86665/108
38 61.53333/105
40 62.08332/104
46 63.33332/113
11 63.78332/103
37 63.91666/107
29 65.24999/111
33 65.5/107
7 65.66666/107
45 69.83333/118
Threshhold: 59.24999
Eliminating 27.

Round 35
44 57.83332/107
46 63.33332/113
21 63.53333/104
19 63.69999/107
38 64.53333/105
40 65.58334/104
15 65.69999/108
37 66.16666/107
11 67.2/103
29 68.24999/111
7 68.41666/107
33 68.91666/107
45 69.83333/118
Threshhold: 63.33332
Eliminating 44.

Round 36
21 63.53333/104
19 63.69999/107
38 64.53333/105
40 65.58334/104
15 65.69999/108
37 66.16666/107
11 67.2/103
29 68.24999/111
7 68.41666/107
33 68.91666/107
46 84/113
45 89/118
Threshhold: 63.69999
Eliminating 21.

Round 37
19 67.08333/107
40 68.41666/104
38 68.91666/105
37 69.66666/107
15 70.25/108
11 70.66666/103
29 70.83334/111
7 72.16666/107
33 72.99999/107
46 84/113
45 89/118
Threshhold: 68.41666
Eliminating 40.

Round 38
19 70.58333/107
37 71.66666/107
29 74/111
15 74.41666/108
11 74.41667/103
38 75.08333/105
33 75.16666/107
7 76.66666/107
46 84/113
45 89/118
Threshhold: 71.66666
Eliminating 19.

Round 39
37 75.49999/107
38 77.83333/105
11 78/103
33 78.66667/107
15 79.83334/108
29 80.33334/111
7 80.83334/107
46 84/113
45 89/118
Threshhold: 77.83333
Eliminating 38.

Round 40
37 79.66666/107
33 82.16667/107
11 82.16667/103
46 84/113
15 84.66666/108
29 84.66667/111
7 84.66667/107
45 89/118
Threshhold: 82.16667
Eliminating 11.

Round 41
37 83.83333/107
46 84/113
33 86/107
15 87.16666/108
7 88.16666/107
29 88.83333/111
45 89/118
Threshhold: 84
Eliminating 37.

Round 42
46 84/113
45 89/118
33 91.16666/107
15 91.66666/108
7 93.16666/107
29 95/111
Threshhold: 89
Eliminating 46.

Final Results:
33 91.16666/107
15 91.66666/108
7 93.16666/107
29 95/111
45 118/118

Awards

The Hugo Awards, Game Theory, And A Modest Proposal

So, if you are one of the lucky people who doesn’t follow the twitter-sphere, here’s the story so far. The Hugo Awards, SFFs most influential honors, announced their list of nominees on Saturday. A group of writers on the conservative side of the political spectrum had campaigned for a slate of nominees, the Sad Puppies, and were very successful in getting their picks onto the ballot, completely taking over some of the categories. Many people were very upset by this, which was probably the point. I’ve been participating in multiple simultaneous discussions, so I thought I’d write up some thoughts here where I can conveniently link them.

Why This Happened

Various people have accused the SPs of cheating, which is almost certainly not the case. On the SP side, people have been crowing that this shows they’re really in the majority, which is also almost certainly not the case. Given the way the Hugo nomination process is structured, organized slate voting is a dominant strategy, and a minority being able to completely dominate the ballot should be an expected result.

If you’re not familiar with it, the process is pretty simple. In each of the various categories (Best Novel, Best Novella, and so on) each voter can nominate up to five works. The votes are all added up, and the top five in each category become the nominees, to be voted on at WorldCon to determine the winner. The SP strategy was to pick five works for each category and encourage their voters to choose those five.

Let’s consider a hypothetical election between Green and Purple voters. There are 800 Greens in the voting pool, and 200 Purples. The Greens mostly prefer Green works, of which there are, say, 10 in serious contention — we’ll call those G1, G2, etc. The Purples similarly prefer Purple works, P1, P2, etc.

The Greens have no organization. Each Green picks the five works out of the ten that he or she personally likes best. Assuming each work has its fans, this will lead to a vote distribution that is reasonably even — say 95 for G3, 93 for G5, 89 for G8, down to 56 for G1.

[EDIT — It has been pointed out that I suck at math here. The actual vote totals would be closer to 400 for each (since each person gets five votes), so in order to make this example work, we need more Green works to spread across, and similarly for Purple. The numbers are just illustrative anyway, although this actually suggests an important point — the SPs had less success in the Best Novel category, where there were some clear front-runners, then in a category like Best Short Story where the vote was more widely scattered.]

If the Purples voted similarly, they would get a similar distribution: 34 for P2, 30 for P10, and so on. In this case, the ballot would be all Green, since the fifth-most popular Green work is more popular than all the Purples.

Instead, Purple Leader says, “Hey, lets all vote for P1, P2, P3, P4, and P5.” The Purples all go along with this. So those five works receive 200 votes each, and the others zero. Now the final ballot will be entirely Purple! The minority, by being more organized, runs the table. The Purples don’t cheat; neither have they suddenly become a majority. They simply have a more effective strategy, considered solely in terms of getting Purple on the ballot.

Why This Is A Problem

Back in the real world, why should we be concerned about this? John Scalzi suggests we should not be. The final Hugo voting includes a “No Award” option, for almost exactly this reason, and the voters can make use of it if they are sufficiently pissed off. Justin Landon broke down last year’s Hugo voting, in which there was a similar, if less successful, SP campaign. The upshot is that the SP candidates were completely defeated in the final voting, which uses a very different voting system — ranking, with instant runoffs, mean there’s no vote-splitting “spoiler” effect. Again, not an unexpected result, and I predict we’ll see something similar this year. (No Award will almost certainly win a few categories.)

But, for me, that’s not good enough. It’s a bit like saying it’s okay someone came over and kicked down your sandcastle, because they weren’t able to build their own. The problem is not that a bunch of conservative-leaning writers got on the ballot; as Scalzi says, that’s not a big deal. The problem is that it is now blindingly obvious that “slate” voting, if widely used, will dominate the nominations.

Suppose next year, when Sad Puppies IV is announced, a liberal-leaning writer counter-organizes a Happy Puppies slate. He or she would probably get a lot of support. Given the composition of the voting pool, Happy Puppies would probably win; let’s say they shut out the Sad Puppies completely. Is that better? Now we have an award in which the organizers of the two slates decide who gets to be on the ballot, independent of what works people really think are worthy. In the above example, note who loses out — Purple works 6 through 10, who didn’t get picked for the slate and were thus completely removed from consideration. In real life, too, there’s crossover between the Green and Purple sides, but slate voting eliminates that entirely. Someone who might attract Green votes, but gets picked for the Purple slate, is going to be screwed.

It’s tricky to talk about the “true spirit of the Hugo awards”, because they mean different things to different people. But I like to think that the scenario where each person chooses the works that they personally found to be best is closest to the ideal. If that scenario is unachievable (and it is) then we can at least try to get as close as possible.

Can We Fix It?

Voting systems are hard. They are the realm of unintended consequences and unforeseen strategies. A whole branch of academic game theory studies them, and there is no system that is clearly best in all circumstances, even give ideal voters; once you add human foibles into the mix, things get even more complicated. So beware of anyone saying, “Oh, it’s easy, we just have to X.”

Here are some things that will probably not work:

Just ban slate voting and campaigning. Impossible to enforce. You can never prove that a voter didn’t independently happen to choose the same works that are on the slate, and it would put the judging authorities in an impossible position, ripe with possibilities for abuse.

Expand the electorate. A good idea in general, but not a silver bullet here. The Hugo electorate is small (~2,000 voters, members of WorldCon) but that isn’t actually the problem. The SPs didn’t win by signing up enough of their people to be a majority (usually what you worry about with small voting pools) they won with a minority by being better organized.

What we need, ideally, is a change in the voting rules that aligns the result we want (everyone picking what they think is best) with the optimal strategy, as much as is possible. We also need the rules to not be excessively complicated and cumbersome, or else no one will vote.

A Modest Proposal: Anti-Votes

I’ve heard several proposals that might work. The most obvious is to change the number of votes allowed so it’s smaller than the number of final nominations, making it much harder to coordinate a slate takeover. (That is, everyone gets to pick 3, and the final 6 top are chosen, or similar.) This might help, but I don’t know that it gets to the root of the problem — it would be harder to coordinate a slate, but far from impossible. I’m interested in thinking about it, though! Here is my suggestion, which seemed a bit odd to me at first, but which I think gets closer to addressing the underlying issue.

The ballot stays as is, except that each category gets a section for five anti-votes. Each voter can both vote and anti-vote, for a total of ten choices. Anti-votes are subtracted in the final voting tally, and the top five results get on the ballot, even if their vote totals are negative or zero.

Why would this help? Because it turns the structural advantage of an organized slate into a disadvantage. Imagine what would happen to the Sad Puppies under this system. People who don’t like them, or who don’t approve of slate voting, can anti-vote their whole slate, just as easily as their supporters can vote for it. The more widely known the slate is, the more anti-votes it will attract.

Of course, the SPs would get anti-votes too, and could easily publish an anti-vote slate. But as long as their opposition isn’t pushing an organized slate of their own, the anti-votes will be split among many possible candidates, just as the Green votes are above. Organization and campaigning would become a liability instead of an asset.

With any voting system, we have to think about possible consequences. Who would be unfairly hurt by this system? The obvious answer is “people who the slate voters very much dislike”. It’s quite possible that, for example, John Scalzi would attract a disproportionate share of the anti-votes from the SPs and their allies, thus crippling his chances compared to a writer who has a similar position but is not as politically active. It might have a chilling effect, where writers think harder about taking certain political positions, lest they get on the anti-vote list of an opposing group.

These are real problems, and it may be that they outweigh the benefits. But it’s at least worth thinking about. As it stands, the Hugo nomination process is badly broken, and unless something is done the system is not going to produce useful results, only political football.